1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
use crate::fp::Fp;
use crate::field::{SizedPrimeField};
use crate::representation::ElementRepr;
use crate::traits::{FieldElement, BitIterator, FieldExtension};
use crate::traits::ZeroAndOne;
use crate::integers::*;
use super::Fp2Fp4FrobeniusBaseElements;

// this implementation assumes extension using polynomial u^2 + m = 0
pub struct Fp2<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> >{
    pub c0: Fp<'a, E, F>,
    pub c1: Fp<'a, E, F>,
    pub extension_field: &'a Extension2<'a, E, F>
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> >std::fmt::Display for Fp2<'a, E, F> {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
        write!(f, "Fq2({} + {} * u)", self.c0, self.c1)
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> >std::fmt::Debug for Fp2<'a, E, F> {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
        write!(f, "Fq2({} + {} * u)", self.c0, self.c1)
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Clone for Fp2<'a, E, F> {
    #[inline(always)]
    fn clone(&self) -> Self {
        Self{
            c0: self.c0.clone(),
            c1: self.c1.clone(),
            extension_field: self.extension_field
        }
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Copy for Fp2<'a, E, F> {}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > PartialEq for Fp2<'a, E, F> {
    #[inline(always)]
    fn eq(&self, other: &Self) -> bool {
        self.c0 == other.c0 && 
        self.c1 == other.c1
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Eq for Fp2<'a, E, F> {
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Fp2<'a, E, F> {
    pub fn mul_by_fp(&mut self, element: &Fp<'a, E, F>) {
        self.c0.mul_assign(&element);
        self.c1.mul_assign(&element);
    }

    pub fn norm(&self) -> Fp<'a, E, F> {
        let mut t0 = self.c0.clone();
        t0.square();
        let mut t1 = self.c1.clone();
        t1.square();
        t1.mul_by_nonresidue(self.extension_field);
        t1.negate();
        t1.add_assign(&t0);

        t1
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > ZeroAndOne for Fp2<'a, E, F> {
    type Params = &'a Extension2<'a, E, F>;

    fn zero(extension_field: &'a Extension2<'a, E, F>) -> Self {
        let zero = Fp::zero(extension_field.field);
        
        Self {
            c0: zero.clone(),
            c1: zero,
            extension_field: extension_field
        }
    }

    #[inline(always)]
    fn one(extension_field: &'a Extension2<'a, E, F>) -> Self {
        let zero = Fp::zero(extension_field.field);
        let one = Fp::one(extension_field.field);
        
        Self {
            c0: one,
            c1: zero,
            extension_field: extension_field
        }
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > FieldElement for Fp2<'a, E, F> {
    /// Returns true iff this element is zero.
    fn is_zero(&self) -> bool {
        self.c0.is_zero() && 
        self.c1.is_zero()
    }

    fn add_assign(&mut self, other: &Self) {
        self.c0.add_assign(&other.c0);
        self.c1.add_assign(&other.c1);
    }

    fn double(&mut self) {
        self.c0.double();
        self.c1.double();
    }

    fn sub_assign(&mut self, other: &Self) {
        self.c0.sub_assign(&other.c0);
        self.c1.sub_assign(&other.c1);
    }

    fn negate(&mut self) {
        self.c0.negate();
        self.c1.negate();
    }

    fn inverse(&self) -> Option<Self> {
        if self.is_zero() {
            None
        } else {
            // Guide to Pairing-based Cryptography, Algorithm 5.19.
            // v0 = c0.square()
            let mut v0 = self.c0.clone();
            v0.square();
            // v1 = c1.square()
            let mut v1 = self.c1.clone();
            v1.square();
            // v0 = v0 - beta * v1
            let mut v1_by_nonresidue = v1.clone();
            v1_by_nonresidue.mul_by_nonresidue(self.extension_field);
            v0.sub_assign(&v1_by_nonresidue);
            v0.inverse().map(|v1| {
                let mut c0 = self.c0.clone();
                c0.mul_assign(&v1);
                let mut c1 = self.c1.clone();
                c1.mul_assign(&v1);
                c1.negate();

                Self {
                    c0: c0, 
                    c1: c1,
                    extension_field: self.extension_field
                }
            })
        }
    }

    fn mul_assign(&mut self, other: &Self)
    {
        let mut v0 = self.c0.clone();
        v0.mul_assign(&other.c0);
        let mut v1 = self.c1.clone();
        v1.mul_assign(&other.c1);

        self.c1.add_assign(&self.c0);
        let mut t0 = other.c0.clone();
        t0.add_assign(&other.c1);
        self.c1.mul_assign(&t0);
        self.c1.sub_assign(&v0);
        self.c1.sub_assign(&v1);
        self.c0 = v0;
        v1.mul_by_nonresidue(self.extension_field);
        self.c0.add_assign(&v1);
    }

    fn square(&mut self)
    {
        // v0 = c0 - c1
        let mut v0 = self.c0.clone();
        v0.sub_assign(&self.c1);
        // v3 = c0 - beta * c1
        let mut v3 = self.c0.clone();
        let mut t0 = self.c1.clone();
        t0.mul_by_nonresidue(self.extension_field);
        v3.sub_assign(&t0);
        // v2 = c0 * c1
        let mut v2 = self.c0.clone();
        v2.mul_assign(&self.c1);

        // v0 = (v0 * v3) + v2
        v0.mul_assign(&v3);
        v0.add_assign(&v2);

        self.c1 = v2.clone();
        self.c1.double();
        self.c0 = v0;
        v2.mul_by_nonresidue(self.extension_field);
        self.c0.add_assign(&v2);

    }

    fn conjugate(&mut self) {
        unreachable!();
        // self.c1.negate();
    }

    fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
        let mut res = Self::one(&self.extension_field);

        let mut found_one = false;

        for i in BitIterator::new(exp) {
            if found_one {
                res.square();
            } else {
                found_one = i;
            }

            if i {
                res.mul_assign(self);
            }
        }

        res
    }

    fn mul_by_nonresidue<EXT: FieldExtension<Element = Self>>(&mut self, for_extesion: &EXT) {
        for_extesion.multiply_by_non_residue(self);
        // self.extension_field.multiply_by_non_residue(self);
    }

    fn frobenius_map(&mut self, power: usize) {
        assert!(self.extension_field.frobenius_coeffs_are_calculated);
        self.c1.mul_assign(&self.extension_field.frobenius_coeffs_c1[power % 2]);
    }
}

// For example, BLS12-381 has non-residue = -1;
pub struct Extension2<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > {
    pub(crate) field: &'a F,
    pub(crate) non_residue: Fp<'a, E, F>,
    pub(crate) frobenius_coeffs_c1: [Fp<'a, E, F>; 2],
    pub(crate) frobenius_coeffs_are_calculated: bool
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Clone for Extension2<'a, E, F> {
    fn clone(&self) -> Self {
        Self {
            field: self.field,
            non_residue: self.non_residue.clone(),
            frobenius_coeffs_c1: self.frobenius_coeffs_c1.clone(),
            frobenius_coeffs_are_calculated: self.frobenius_coeffs_are_calculated
        }
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > Extension2<'a, E, F> {
    pub (crate) fn new(non_residue: Fp<'a, E, F>) -> Self {
        let field = non_residue.field;

        let zeros = [Fp::zero(field), Fp::zero(field)];
        
        Self {
            non_residue,
            field: & field,
            frobenius_coeffs_c1: zeros,
            frobenius_coeffs_are_calculated: false
        }
    }

    pub(crate) fn calculate_frobenius_coeffs(
        &mut self,
        modulus: &MaxFieldUint,
    ) -> Result<(), ()> {
        use super::is_one_mod_two;

        if !is_one_mod_two(&modulus) {
            if !crate::features::in_gas_metering() {
                return Err(());
            }
        }

        let non_residue = &self.non_residue;

        // NONRESIDUE**(((q^0) - 1) / 2)
        let f_0 = Fp::one(self.field);

        // NONRESIDUE**(((q^1) - 1) / 2)
        let power = *modulus >> 1;
    
        let f_1 = non_residue.pow(power.as_ref());

        self.frobenius_coeffs_c1 = [f_0, f_1];
        self.frobenius_coeffs_are_calculated = true;

        Ok(())
    }

    pub(crate) fn calculate_frobenius_coeffs_with_precomp(
        &mut self,
        precomp: &Fp2Fp4FrobeniusBaseElements<'a, E, F>
    ) -> Result<(), ()> {    
        let f_0 = Fp::one(self.field);
        
        // precomputation has it by 4, so square
        let mut f_1 = precomp.non_residue_in_q_minus_one_by_four.clone();
        f_1.square();

        self.frobenius_coeffs_c1 = [f_0, f_1];
        self.frobenius_coeffs_are_calculated = true;

        Ok(())
    }
}

impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> > FieldExtension for Extension2<'a, E, F> {
    const EXTENSION_DEGREE: usize = 2;
    
    type Element = Fp<'a, E, F>;

    fn multiply_by_non_residue(&self, el: &mut Self::Element) {
        // this is simply a multiplication by non-residue that is Fp element cause everything else 
        // is covered in explicit formulas for multiplications for Fp2
        el.mul_assign(&self.non_residue);
    }
}