1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
use crate::representation::{ElementRepr};
use crate::traits::FieldElement;
use crate::field::{SizedPrimeField};
use crate::fp::Fp;
impl<'a, E: ElementRepr, F: SizedPrimeField<Repr = E> >Fp<'a, E, F> {
pub(crate) fn mont_inverse(&self) -> Option<Self> {
if self.is_zero() {
None
} else {
let modulus = *self.field.modulus();
let mut u = modulus;
let mut v = self.repr;
let mut r = F::Repr::from(0);
let mut s = F::Repr::from(1);
let mut k = 0u64;
let mut found = false;
for _ in 0..E::NUM_LIMBS*128 {
if v.is_zero() {
found = true;
break;
}
if u.is_even() {
u.div2();
s.mul2();
} else if v.is_even() {
v.div2();
r.mul2();
} else if u > v {
u.sub_noborrow(&v);
u.div2();
r.add_nocarry(&s);
s.mul2();
} else if v >= u {
v.sub_noborrow(&u);
v.div2();
s.add_nocarry(&r);
r.mul2();
}
k += 1;
}
if !found {
return None;
}
if r >= modulus {
r.sub_noborrow(&modulus);
}
let mut tmp = modulus;
tmp.sub_noborrow(&r);
r = tmp;
let mont_power_param = self.field.mont_power();
if k > mont_power_param {
for _ in 0..(k - mont_power_param) {
if r.is_even() {
r.div2();
} else {
r.add_nocarry(&modulus);
r.div2();
}
}
} else {
for _ in 0..(mont_power_param - k) {
r.mul2();
if r >= modulus {
r.sub_noborrow(&modulus);
}
}
}
let el = Fp::from_repr(self.field, r);
if el.is_err() {
return None;
}
let el = el.expect("guaranteed to exist");
Some(el)
}
}
pub(crate) fn new_mont_inverse(&self) -> Option<Self> {
if self.is_zero() {
None
} else {
let modulus = *self.field.modulus();
let mut u = modulus;
let mut v = self.repr;
let mut r = F::Repr::from(0);
let mut s = F::Repr::from(1);
let mut k = 0u64;
let mut found = false;
for _ in 0..E::NUM_LIMBS*128 {
if v.is_zero() {
found = true;
break;
}
if u.is_even() {
u.div2();
s.mul2();
} else if v.is_even() {
v.div2();
r.mul2();
} else if u > v {
u.sub_noborrow(&v);
u.div2();
r.add_nocarry(&s);
s.mul2();
} else if v >= u {
v.sub_noborrow(&u);
v.div2();
s.add_nocarry(&r);
r.mul2();
}
k += 1;
}
if !found {
return None;
}
if r >= modulus {
r.sub_noborrow(&modulus);
}
let mut tmp = modulus;
tmp.sub_noborrow(&r);
r = tmp;
let mont_power = self.field.mont_power();
let modulus_bits_ceil = self.field.modulus_bits();
let k_in_range = modulus_bits_ceil <= k && k <= mont_power + modulus_bits_ceil;
if !k_in_range {
return None;
}
if modulus_bits_ceil <= k && k <= mont_power {
let mut r_by_r2 = Self {
field: self.field,
repr: r
};
let r2 = Self {
field: self.field,
repr: *self.field.mont_r2()
};
r_by_r2.mul_assign(&r2);
r = r_by_r2.repr;
k += mont_power;
}
if k > 2*mont_power {
return None;
}
if 2*mont_power - k > mont_power {
return None;
}
let mut two_in_two_m_minus_k_repr = F::Repr::from(1);
two_in_two_m_minus_k_repr.shl((2*mont_power - k) as u32);
{
let mut r_by_two_in_two_m_minus_k = Self {
field: self.field,
repr: r
};
let two_in_two_m_minus_k = Self {
field: self.field,
repr: two_in_two_m_minus_k_repr
};
r_by_two_in_two_m_minus_k.mul_assign(&two_in_two_m_minus_k);
r = r_by_two_in_two_m_minus_k.repr;
}
let el = Fp::from_repr(self.field, r);
if el.is_err() {
println!("Representation is invalid");
return None;
}
let el = el.expect("guaranteed to exist");
Some(el)
}
}
}
#[cfg(test)]
mod tests {
use crate::traits::FieldElement;
use crate::field::U256Repr;
use crate::fp::Fp;
use num_bigint::BigUint;
use num_traits::Num;
#[test]
fn test_mont_inverse() {
use crate::field::new_field;
let field = new_field::<U256Repr>("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10).unwrap();
let mut be_repr = vec![0u8; 32];
be_repr[31] = 7u8;
let element = Fp::from_be_bytes(&field, &be_repr[..], false).unwrap();
let inverse = element.eea_inverse().unwrap();
let mont_inverse = element.mont_inverse().unwrap();
assert_eq!(inverse, mont_inverse);
}
#[test]
fn test_new_mont_inverse() {
use crate::field::new_field;
let field = new_field::<U256Repr>("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10).unwrap();
let mut be_repr = vec![0u8; 32];
be_repr[31] = 7u8;
let element = Fp::from_be_bytes(&field, &be_repr[..], false).unwrap();
let inverse = element.eea_inverse().unwrap();
let mont_inverse = element.new_mont_inverse().unwrap();
assert_eq!(inverse, mont_inverse);
}
#[test]
fn test_random_mont_inverse() {
use rand::thread_rng;
use rand::RngCore;
use crate::field::new_field;
let field = new_field::<U256Repr>("21888242871839275222246405745257275088696311157297823662689037894645226208583", 10).unwrap();
let mut rng = thread_rng();
let mut be_repr = vec![0u8; 32];
for _ in 0..1000 {
rng.fill_bytes(&mut be_repr[..]);
be_repr[0] = be_repr[0] & 0x1f;
let element = Fp::from_be_bytes(&field, &be_repr[..], false).unwrap();
let inverse = element.eea_inverse().unwrap();
let mont_inverse = element.new_mont_inverse().unwrap();
assert_eq!(inverse, mont_inverse);
}
}
#[test]
fn test_small_number_of_limbs_inverse_0() {
use crate::field::new_field;
use crate::traits::ZeroAndOne;
let field = new_field::<U256Repr>("f98889454fc3", 16).unwrap();
let value = BigUint::from_str_radix("1fe45623da1", 16).unwrap();
let value_be_bytes = value.to_bytes_be();
let element = Fp::from_be_bytes(&field, &value_be_bytes[..], true).unwrap();
let inverse = element.eea_inverse().expect("inverse must exist");
println!("EEA inverse = {}", inverse);
let mont_inverse = element.new_mont_inverse().expect("montgomery inverse must exist");
println!("Montgomery form inverse = {}", mont_inverse);
let one = Fp::one(&field);
let mut may_be_one = element.clone();
may_be_one.mul_assign(&mont_inverse);
assert!(may_be_one == one, "montgomery inverse is not an inverse");
let mut may_be_one = element.clone();
may_be_one.mul_assign(&inverse);
assert!(may_be_one == one, "eea inverse is not an inverse");
assert_eq!(inverse, mont_inverse);
}
fn test_for_field_end_element(
field: &str,
radix: u32,
element: &str,
element_radix: u32
) {
use crate::field::new_field;
use crate::traits::ZeroAndOne;
let field = new_field::<U256Repr>(field, radix as usize).unwrap();
let value = BigUint::from_str_radix(element, element_radix).unwrap();
let value_be_bytes = value.to_bytes_be();
let element = Fp::from_be_bytes(&field, &value_be_bytes[..], true).unwrap();
if let Some(inverse) = element.eea_inverse() {
let mont_inverse = element.new_mont_inverse().expect("montgomery inverse must exist");
println!("Montgomery form inverse = {}", mont_inverse);
let one = Fp::one(&field);
let mut may_be_one = element.clone();
may_be_one.mul_assign(&mont_inverse);
assert!(may_be_one == one, "montgomery inverse is not an inverse");
let mut may_be_one = element.clone();
may_be_one.mul_assign(&inverse);
assert!(may_be_one == one, "eea inverse is not an inverse");
assert_eq!(inverse, mont_inverse);
} else {
println!("Inverse does not exist");
assert!(element.new_mont_inverse().is_none(),"there should be no montgomery inverse too");
}
}
#[test]
fn test_small_number_of_limbs_inverse_1() {
use crate::field::new_field;
use crate::traits::ZeroAndOne;
let field = new_field::<U256Repr>("54872962777895", 10).unwrap();
let value = BigUint::from_str_radix("54872962777893", 10).unwrap();
let value_be_bytes = value.to_bytes_be();
let element = Fp::from_be_bytes(&field, &value_be_bytes[..], true).unwrap();
let inverse = element.eea_inverse().expect("inverse must exist");
println!("EEA inverse = {}", inverse);
let mont_inverse = element.new_mont_inverse().expect("montgomery inverse must exist");
println!("Montgomery form inverse = {}", mont_inverse);
let one = Fp::one(&field);
let mut may_be_one = element.clone();
may_be_one.mul_assign(&mont_inverse);
assert!(may_be_one == one, "montgomery inverse is not an inverse");
let mut may_be_one = element.clone();
may_be_one.mul_assign(&inverse);
assert!(may_be_one == one, "eea inverse is not an inverse");
assert_eq!(inverse, mont_inverse);
}
#[test]
fn test_small_number_of_limbs_inverse_2() {
test_for_field_end_element("63", 16, "48", 16);
test_for_field_end_element("f3", 16, "e3", 16);
}
}