1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.

// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with OpenEthereum.  If not, see <http://www.gnu.org/licenses/>.

use compute::{calculate_dag_item, FNV_PRIME};
use keccak::H256;
use shared::{get_data_size, Node, ETHASH_ACCESSES, ETHASH_MIX_BYTES};

const PROGPOW_CACHE_BYTES: usize = 16 * 1024;
const PROGPOW_CACHE_WORDS: usize = PROGPOW_CACHE_BYTES / 4;
const PROGPOW_CNT_CACHE: usize = 12;
const PROGPOW_CNT_MATH: usize = 20;
const PROGPOW_CNT_DAG: usize = ETHASH_ACCESSES;
const PROGPOW_DAG_LOADS: usize = 4;
const PROGPOW_MIX_BYTES: usize = 2 * ETHASH_MIX_BYTES;
const PROGPOW_PERIOD_LENGTH: usize = 50; // blocks per progpow epoch (N)
const PROGPOW_LANES: usize = 16;
const PROGPOW_REGS: usize = 32;

const FNV_HASH: u32 = 0x811c9dc5;

const KECCAKF_RNDC: [u32; 24] = [
    0x00000001, 0x00008082, 0x0000808a, 0x80008000, 0x0000808b, 0x80000001, 0x80008081, 0x00008009,
    0x0000008a, 0x00000088, 0x80008009, 0x8000000a, 0x8000808b, 0x0000008b, 0x00008089, 0x00008003,
    0x00008002, 0x00000080, 0x0000800a, 0x8000000a, 0x80008081, 0x00008080, 0x80000001, 0x80008008,
];

const KECCAKF_ROTC: [u32; 24] = [
    1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44,
];

const KECCAKF_PILN: [usize; 24] = [
    10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
];

fn keccak_f800_round(st: &mut [u32; 25], r: usize) {
    // Theta
    let mut bc = [0u32; 5];
    for i in 0..bc.len() {
        bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
    }

    for i in 0..bc.len() {
        let t = bc[(i + 4) % 5] ^ bc[(i + 1) % 5].rotate_left(1);
        for j in (0..st.len()).step_by(5) {
            st[j + i] ^= t;
        }
    }

    // Rho Pi
    let mut t = st[1];

    debug_assert_eq!(KECCAKF_ROTC.len(), 24);
    for i in 0..24 {
        let j = KECCAKF_PILN[i];
        bc[0] = st[j];
        st[j] = t.rotate_left(KECCAKF_ROTC[i]);
        t = bc[0];
    }

    // Chi
    for j in (0..st.len()).step_by(5) {
        for i in 0..bc.len() {
            bc[i] = st[j + i];
        }
        for i in 0..bc.len() {
            st[j + i] ^= (!bc[(i + 1) % 5]) & bc[(i + 2) % 5];
        }
    }

    // Iota
    debug_assert!(r < KECCAKF_RNDC.len());
    st[0] ^= KECCAKF_RNDC[r];
}

fn keccak_f800(header_hash: H256, nonce: u64, result: [u32; 8], st: &mut [u32; 25]) {
    for i in 0..8 {
        st[i] = (header_hash[4 * i] as u32)
            + ((header_hash[4 * i + 1] as u32) << 8)
            + ((header_hash[4 * i + 2] as u32) << 16)
            + ((header_hash[4 * i + 3] as u32) << 24);
    }

    st[8] = nonce as u32;
    st[9] = (nonce >> 32) as u32;

    for i in 0..8 {
        st[10 + i] = result[i];
    }

    for r in 0..22 {
        keccak_f800_round(st, r);
    }
}

pub fn keccak_f800_short(header_hash: H256, nonce: u64, result: [u32; 8]) -> u64 {
    let mut st = [0u32; 25];
    keccak_f800(header_hash, nonce, result, &mut st);
    (st[0].swap_bytes() as u64) << 32 | st[1].swap_bytes() as u64
}

pub fn keccak_f800_long(header_hash: H256, nonce: u64, result: [u32; 8]) -> H256 {
    let mut st = [0u32; 25];
    keccak_f800(header_hash, nonce, result, &mut st);

    // NOTE: transmute from `[u32; 8]` to `[u8; 32]`
    unsafe { std::mem::transmute([st[0], st[1], st[2], st[3], st[4], st[5], st[6], st[7]]) }
}

#[inline]
fn fnv1a_hash(h: u32, d: u32) -> u32 {
    (h ^ d).wrapping_mul(FNV_PRIME)
}

#[derive(Clone)]
struct Kiss99 {
    z: u32,
    w: u32,
    jsr: u32,
    jcong: u32,
}

impl Kiss99 {
    fn new(z: u32, w: u32, jsr: u32, jcong: u32) -> Kiss99 {
        Kiss99 { z, w, jsr, jcong }
    }

    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.z = 36969u32
            .wrapping_mul(self.z & 65535)
            .wrapping_add(self.z >> 16);
        self.w = 18000u32
            .wrapping_mul(self.w & 65535)
            .wrapping_add(self.w >> 16);
        let mwc = (self.z << 16).wrapping_add(self.w);
        self.jsr ^= self.jsr << 17;
        self.jsr ^= self.jsr >> 13;
        self.jsr ^= self.jsr << 5;
        self.jcong = 69069u32.wrapping_mul(self.jcong).wrapping_add(1234567);

        (mwc ^ self.jcong).wrapping_add(self.jsr)
    }
}

fn fill_mix(seed: u64, lane_id: u32) -> [u32; PROGPOW_REGS] {
    // Use FNV to expand the per-warp seed to per-lane
    // Use KISS to expand the per-lane seed to fill mix
    let z = fnv1a_hash(FNV_HASH, seed as u32);
    let w = fnv1a_hash(z, (seed >> 32) as u32);
    let jsr = fnv1a_hash(w, lane_id);
    let jcong = fnv1a_hash(jsr, lane_id);

    let mut rnd = Kiss99::new(z, w, jsr, jcong);

    let mut mix = [0; PROGPOW_REGS];

    debug_assert_eq!(PROGPOW_REGS, 32);
    for i in 0..32 {
        mix[i] = rnd.next_u32();
    }

    mix
}

// Merge new data from b into the value in a. Assuming A has high entropy only
// do ops that retain entropy even if B is low entropy (IE don't do A&B)
fn merge(a: u32, b: u32, r: u32) -> u32 {
    match r % 4 {
        0 => a.wrapping_mul(33).wrapping_add(b),
        1 => (a ^ b).wrapping_mul(33),
        2 => a.rotate_left(((r >> 16) % 31) + 1) ^ b,
        _ => a.rotate_right(((r >> 16) % 31) + 1) ^ b,
    }
}

fn math(a: u32, b: u32, r: u32) -> u32 {
    match r % 11 {
        0 => a.wrapping_add(b),
        1 => a.wrapping_mul(b),
        2 => ((a as u64).wrapping_mul(b as u64) >> 32) as u32,
        3 => a.min(b),
        4 => a.rotate_left(b),
        5 => a.rotate_right(b),
        6 => a & b,
        7 => a | b,
        8 => a ^ b,
        9 => a.leading_zeros() + b.leading_zeros(),
        _ => a.count_ones() + b.count_ones(),
    }
}

fn progpow_init(seed: u64) -> (Kiss99, [u32; PROGPOW_REGS], [u32; PROGPOW_REGS]) {
    let z = fnv1a_hash(FNV_HASH, seed as u32);
    let w = fnv1a_hash(z, (seed >> 32) as u32);
    let jsr = fnv1a_hash(w, seed as u32);
    let jcong = fnv1a_hash(jsr, (seed >> 32) as u32);

    let mut rnd = Kiss99::new(z, w, jsr, jcong);

    // Create a random sequence of mix destinations for merge() and mix sources
    // for cache reads guarantees every destination merged once and guarantees
    // no duplicate cache reads, which could be optimized away. Uses
    // Fisher-Yates shuffle.
    let mut mix_seq_dst = [0u32; PROGPOW_REGS];
    let mut mix_seq_cache = [0u32; PROGPOW_REGS];
    for i in 0..mix_seq_dst.len() {
        mix_seq_dst[i] = i as u32;
        mix_seq_cache[i] = i as u32;
    }

    for i in (1..mix_seq_dst.len()).rev() {
        let j = rnd.next_u32() as usize % (i + 1);
        mix_seq_dst.swap(i, j);

        let j = rnd.next_u32() as usize % (i + 1);
        mix_seq_cache.swap(i, j);
    }

    (rnd, mix_seq_dst, mix_seq_cache)
}

pub type CDag = [u32; PROGPOW_CACHE_WORDS];

fn progpow_loop(
    seed: u64,
    loop_: usize,
    mix: &mut [[u32; PROGPOW_REGS]; PROGPOW_LANES],
    cache: &[Node],
    c_dag: &CDag,
    data_size: usize,
) {
    // All lanes share a base address for the global load. Global offset uses
    // mix[0] to guarantee it depends on the load result.
    let g_offset = mix[loop_ % PROGPOW_LANES][0] as usize
        % (64 * data_size / (PROGPOW_LANES * PROGPOW_DAG_LOADS));

    // 256 bytes of dag data
    let mut dag_item = [0u32; 64];

    // Fetch DAG nodes (64 bytes each)
    for l in 0..PROGPOW_DAG_LOADS {
        let index = g_offset * PROGPOW_LANES * PROGPOW_DAG_LOADS + l * 16;
        let node = calculate_dag_item(index as u32 / 16, cache);
        dag_item[l * 16..(l + 1) * 16].clone_from_slice(node.as_words());
    }

    let (rnd, mix_seq_dst, mix_seq_cache) = progpow_init(seed);

    // Lanes can execute in parallel and will be convergent
    for l in 0..mix.len() {
        let mut rnd = rnd.clone();

        // Initialize the seed and mix destination sequence
        let mut mix_seq_dst_cnt = 0;
        let mut mix_seq_cache_cnt = 0;

        let mut mix_dst = || {
            let res = mix_seq_dst[mix_seq_dst_cnt % PROGPOW_REGS] as usize;
            mix_seq_dst_cnt += 1;
            res
        };
        let mut mix_cache = || {
            let res = mix_seq_cache[mix_seq_cache_cnt % PROGPOW_REGS] as usize;
            mix_seq_cache_cnt += 1;
            res
        };

        for i in 0..PROGPOW_CNT_CACHE.max(PROGPOW_CNT_MATH) {
            if i < PROGPOW_CNT_CACHE {
                // Cached memory access, lanes access random 32-bit locations
                // within the first portion of the DAG
                let offset = mix[l][mix_cache()] as usize % PROGPOW_CACHE_WORDS;
                let data = c_dag[offset];
                let dst = mix_dst();

                mix[l][dst] = merge(mix[l][dst], data, rnd.next_u32());
            }

            if i < PROGPOW_CNT_MATH {
                // Random math
                // Generate 2 unique sources
                let src_rnd = rnd.next_u32() % (PROGPOW_REGS * (PROGPOW_REGS - 1)) as u32;
                let src1 = src_rnd % PROGPOW_REGS as u32; // 0 <= src1 < PROGPOW_REGS
                let mut src2 = src_rnd / PROGPOW_REGS as u32; // 0 <= src2 < PROGPOW_REGS - 1
                if src2 >= src1 {
                    src2 += 1; // src2 is now any reg other than src1
                }

                let data = math(mix[l][src1 as usize], mix[l][src2 as usize], rnd.next_u32());
                let dst = mix_dst();

                mix[l][dst] = merge(mix[l][dst], data, rnd.next_u32());
            }
        }

        // Global load to sequential locations
        let mut data_g = [0u32; PROGPOW_DAG_LOADS];
        let index = ((l ^ loop_) % PROGPOW_LANES) * PROGPOW_DAG_LOADS;
        for i in 0..PROGPOW_DAG_LOADS {
            data_g[i] = dag_item[index + i];
        }

        // Consume the global load data at the very end of the loop to allow
        // full latency hiding. Always merge into `mix[0]` to feed the offset
        // calculation.
        mix[l][0] = merge(mix[l][0], data_g[0], rnd.next_u32());
        for i in 1..PROGPOW_DAG_LOADS {
            let dst = mix_dst();
            mix[l][dst] = merge(mix[l][dst], data_g[i], rnd.next_u32());
        }
    }
}

pub fn progpow(
    header_hash: H256,
    nonce: u64,
    block_number: u64,
    cache: &[Node],
    c_dag: &CDag,
) -> (H256, H256) {
    let mut mix = [[0u32; PROGPOW_REGS]; PROGPOW_LANES];
    let mut lane_results = [0u32; PROGPOW_LANES];
    let mut result = [0u32; 8];

    let data_size = get_data_size(block_number) / PROGPOW_MIX_BYTES;

    // NOTE: This assert is required to aid the optimizer elide the non-zero
    // remainder check in `progpow_loop`.
    assert!(data_size > 0);

    // Initialize mix for all lanes
    let seed = keccak_f800_short(header_hash, nonce, result);

    for l in 0..mix.len() {
        mix[l] = fill_mix(seed, l as u32);
    }

    // Execute the randomly generated inner loop
    let period = block_number / PROGPOW_PERIOD_LENGTH as u64;
    for i in 0..PROGPOW_CNT_DAG {
        progpow_loop(period, i, &mut mix, cache, c_dag, data_size);
    }

    // Reduce mix data to a single per-lane result
    for l in 0..lane_results.len() {
        lane_results[l] = FNV_HASH;
        for i in 0..PROGPOW_REGS {
            lane_results[l] = fnv1a_hash(lane_results[l], mix[l][i]);
        }
    }

    // Reduce all lanes to a single 128-bit result
    result = [FNV_HASH; 8];
    for l in 0..PROGPOW_LANES {
        result[l % 8] = fnv1a_hash(result[l % 8], lane_results[l]);
    }

    let digest = keccak_f800_long(header_hash, seed, result);

    // NOTE: transmute from `[u32; 8]` to `[u8; 32]`
    let result = unsafe { ::std::mem::transmute(result) };

    (digest, result)
}

pub fn generate_cdag(cache: &[Node]) -> CDag {
    let mut c_dag = [0u32; PROGPOW_CACHE_WORDS];

    for i in 0..PROGPOW_CACHE_WORDS / 16 {
        let node = calculate_dag_item(i as u32, cache);
        for j in 0..16 {
            c_dag[i * 16 + j] = node.as_words()[j];
        }
    }

    c_dag
}

#[cfg(test)]
mod test {
    use tempdir::TempDir;

    use super::*;
    use cache::{NodeCacheBuilder, OptimizeFor};
    use keccak::H256;
    use rustc_hex::FromHex;
    use serde_json::{self, Value};
    use std::collections::VecDeque;

    fn h256(hex: &str) -> H256 {
        let bytes = FromHex::from_hex(hex).unwrap();
        let mut res = [0; 32];
        res.copy_from_slice(&bytes);
        res
    }

    #[test]
    fn test_cdag() {
        let builder = NodeCacheBuilder::new(OptimizeFor::Memory, u64::max_value());
        let tempdir = TempDir::new("").unwrap();
        let cache = builder.new_cache(tempdir.into_path(), 0);

        let c_dag = generate_cdag(cache.as_ref());

        let expected = vec![
            690150178u32,
            1181503948,
            2248155602,
            2118233073,
            2193871115,
            1791778428,
            1067701239,
            724807309,
            530799275,
            3480325829,
            3899029234,
            1998124059,
            2541974622,
            1100859971,
            1297211151,
            3268320000,
            2217813733,
            2690422980,
            3172863319,
            2651064309,
        ];

        assert_eq!(c_dag.iter().take(20).cloned().collect::<Vec<_>>(), expected,);
    }

    #[test]
    fn test_random_merge() {
        let tests = [
            (1000000u32, 101u32, 33000101u32),
            (2000000, 102, 66003366),
            (3000000, 103, 6000103),
            (4000000, 104, 2000104),
            (1000000, 0, 33000000),
            (2000000, 0, 66000000),
            (3000000, 0, 6000000),
            (4000000, 0, 2000000),
        ];

        for (i, &(a, b, expected)) in tests.iter().enumerate() {
            assert_eq!(merge(a, b, i as u32), expected,);
        }
    }

    #[test]
    fn test_random_math() {
        let tests = [
            (20u32, 22u32, 42u32),
            (70000, 80000, 1305032704),
            (70000, 80000, 1),
            (1, 2, 1),
            (3, 10000, 196608),
            (3, 0, 3),
            (3, 6, 2),
            (3, 6, 7),
            (3, 6, 5),
            (0, 0xffffffff, 32),
            (3 << 13, 1 << 5, 3),
            (22, 20, 42),
            (80000, 70000, 1305032704),
            (80000, 70000, 1),
            (2, 1, 1),
            (10000, 3, 80000),
            (0, 3, 0),
            (6, 3, 2),
            (6, 3, 7),
            (6, 3, 5),
            (0, 0xffffffff, 32),
            (3 << 13, 1 << 5, 3),
        ];

        for (i, &(a, b, expected)) in tests.iter().enumerate() {
            assert_eq!(math(a, b, i as u32), expected,);
        }
    }

    #[test]
    fn test_keccak_256() {
        let expected = "5dd431e5fbc604f499bfa0232f45f8f142d0ff5178f539e5a7800bf0643697af";
        assert_eq!(keccak_f800_long([0; 32], 0, [0; 8]), h256(expected),);
    }

    #[test]
    fn test_keccak_64() {
        let expected: u64 = 0x5dd431e5fbc604f4;
        assert_eq!(keccak_f800_short([0; 32], 0, [0; 8]), expected,);
    }

    #[test]
    fn test_progpow_hash() {
        let builder = NodeCacheBuilder::new(OptimizeFor::Memory, u64::max_value());
        let tempdir = TempDir::new("").unwrap();
        let cache = builder.new_cache(tempdir.into_path(), 0);
        let c_dag = generate_cdag(cache.as_ref());

        let header_hash = [0; 32];

        let (digest, result) = progpow(header_hash, 0, 0, cache.as_ref(), &c_dag);

        let expected_digest =
            FromHex::from_hex("63155f732f2bf556967f906155b510c917e48e99685ead76ea83f4eca03ab12b")
                .unwrap();
        let expected_result =
            FromHex::from_hex("faeb1be51075b03a4ff44b335067951ead07a3b078539ace76fd56fc410557a3")
                .unwrap();

        assert_eq!(digest.to_vec(), expected_digest,);

        assert_eq!(result.to_vec(), expected_result,);
    }

    #[test]
    fn test_progpow_testvectors() {
        struct ProgpowTest {
            block_number: u64,
            header_hash: H256,
            nonce: u64,
            mix_hash: H256,
            final_hash: H256,
        }

        let tests: Vec<VecDeque<Value>> =
            serde_json::from_slice(include_bytes!("../res/progpow_testvectors.json")).unwrap();

        let tests: Vec<ProgpowTest> = tests
            .into_iter()
            .map(|mut test: VecDeque<Value>| {
                assert!(test.len() == 5);

                let block_number: u64 = serde_json::from_value(test.pop_front().unwrap()).unwrap();
                let header_hash: String =
                    serde_json::from_value(test.pop_front().unwrap()).unwrap();
                let nonce: String = serde_json::from_value(test.pop_front().unwrap()).unwrap();
                let mix_hash: String = serde_json::from_value(test.pop_front().unwrap()).unwrap();
                let final_hash: String = serde_json::from_value(test.pop_front().unwrap()).unwrap();

                ProgpowTest {
                    block_number,
                    header_hash: h256(&header_hash),
                    nonce: u64::from_str_radix(&nonce, 16).unwrap(),
                    mix_hash: h256(&mix_hash),
                    final_hash: h256(&final_hash),
                }
            })
            .collect();

        for test in tests {
            let builder = NodeCacheBuilder::new(OptimizeFor::Memory, u64::max_value());
            let tempdir = TempDir::new("").unwrap();
            let cache = builder.new_cache(tempdir.path().to_owned(), test.block_number);
            let c_dag = generate_cdag(cache.as_ref());

            let (digest, result) = progpow(
                test.header_hash,
                test.nonce,
                test.block_number,
                cache.as_ref(),
                &c_dag,
            );

            assert_eq!(digest, test.final_hash);
            assert_eq!(result, test.mix_hash);
        }
    }
}