1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
use std::{
collections::{HashSet, VecDeque},
hash::Hash,
};
const COLLECTION_QUEUE_SIZE: usize = 8;
pub struct CacheManager<T> {
pref_cache_size: usize,
max_cache_size: usize,
bytes_per_cache_entry: usize,
cache_usage: VecDeque<HashSet<T>>,
}
impl<T> CacheManager<T>
where
T: Eq + Hash,
{
pub fn new(
pref_cache_size: usize,
max_cache_size: usize,
bytes_per_cache_entry: usize,
) -> Self {
CacheManager {
pref_cache_size: pref_cache_size,
max_cache_size: max_cache_size,
bytes_per_cache_entry: bytes_per_cache_entry,
cache_usage: (0..COLLECTION_QUEUE_SIZE)
.into_iter()
.map(|_| Default::default())
.collect(),
}
}
pub fn note_used(&mut self, id: T) {
if !self.cache_usage[0].contains(&id) {
if let Some(c) = self
.cache_usage
.iter_mut()
.skip(1)
.find(|e| e.contains(&id))
{
c.remove(&id);
}
self.cache_usage[0].insert(id);
}
}
pub fn collect_garbage<F>(&mut self, current_size: usize, mut notify_unused: F)
where
F: FnMut(HashSet<T>) -> usize,
{
if current_size < self.pref_cache_size {
self.rotate_cache_if_needed();
return;
}
for _ in 0..COLLECTION_QUEUE_SIZE {
if let Some(back) = self.cache_usage.pop_back() {
let current_size = notify_unused(back);
self.cache_usage.push_front(Default::default());
if current_size < self.max_cache_size {
break;
}
}
}
}
fn rotate_cache_if_needed(&mut self) {
if self.cache_usage.is_empty() {
return;
}
if self.cache_usage[0].len() * self.bytes_per_cache_entry
> self.pref_cache_size / COLLECTION_QUEUE_SIZE
{
if let Some(cache) = self.cache_usage.pop_back() {
self.cache_usage.push_front(cache);
}
}
}
}