1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.

// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with OpenEthereum.  If not, see <http://www.gnu.org/licenses/>.

use bytes::{Buf, BufMut};
use crypto::{
    aes::{AesCtr256, AesEcb256},
    publickey::Secret,
};
use ethereum_types::{H128, H256, H512};
use handshake::Handshake;
use hash::{keccak, write_keccak};
use io::{IoContext, StreamToken};
use mio::{
    deprecated::{EventLoop, Handler, TryRead, TryWrite},
    tcp::*,
    PollOpt, Ready, Token,
};
use network::{Error, ErrorKind};
use parity_bytes::*;
use rlp::{Rlp, RlpStream};
use std::{
    collections::VecDeque,
    io::{self, Cursor, Read, Write},
    net::SocketAddr,
    sync::atomic::{AtomicBool, Ordering as AtomicOrdering},
    time::Duration,
};
use tiny_keccak::Keccak;

const ENCRYPTED_HEADER_LEN: usize = 32;
const RECEIVE_PAYLOAD: Duration = Duration::from_secs(30);
pub const MAX_PAYLOAD_SIZE: usize = (1 << 24) - 1;

/// Network responses should try not to go over this limit.
/// This should be lower than MAX_PAYLOAD_SIZE
pub const PAYLOAD_SOFT_LIMIT: usize = (1 << 22) - 1;

pub trait GenericSocket: Read + Write {}

impl GenericSocket for TcpStream {}

pub struct GenericConnection<Socket: GenericSocket> {
    /// Connection id (token)
    pub token: StreamToken,
    /// Network socket
    pub socket: Socket,
    /// Receive buffer
    rec_buf: Bytes,
    /// Expected size
    rec_size: usize,
    /// Send out packets FIFO
    send_queue: VecDeque<Cursor<Bytes>>,
    /// Event flags this connection expects
    interest: Ready,
    /// Registered flag
    registered: AtomicBool,
}

impl<Socket: GenericSocket> GenericConnection<Socket> {
    pub fn expect(&mut self, size: usize) {
        trace!(target:"network", "Expect to read {} bytes", size);
        if self.rec_size != self.rec_buf.len() {
            warn!(target:"network", "Unexpected connection read start");
        }
        self.rec_size = size;
    }

    /// Readable IO handler. Called when there is some data to be read.
    pub fn readable(&mut self) -> io::Result<Option<Bytes>> {
        if self.rec_size == 0 || self.rec_buf.len() >= self.rec_size {
            return Ok(None);
        }
        let sock_ref = <Socket as Read>::by_ref(&mut self.socket);
        loop {
            let max = self.rec_size - self.rec_buf.len();
            match sock_ref
                .take(max as u64)
                .try_read(unsafe { self.rec_buf.bytes_mut() })
            {
                Ok(Some(size)) if size != 0 => {
                    unsafe {
                        self.rec_buf.advance_mut(size);
                    }
                    trace!(target:"network", "{}: Read {} of {} bytes", self.token, self.rec_buf.len(), self.rec_size);
                    if self.rec_size != 0 && self.rec_buf.len() == self.rec_size {
                        self.rec_size = 0;
                        return Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())));
                    } else if self.rec_buf.len() > self.rec_size {
                        warn!(target:"network", "Read past buffer {} bytes", self.rec_buf.len() - self.rec_size);
                        return Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())));
                    }
                }
                Ok(_) => return Ok(None),
                Err(e) => {
                    debug!(target:"network", "Read error {} ({})", self.token, e);
                    return Err(e);
                }
            }
        }
    }

    /// Add a packet to send queue.
    pub fn send<Message>(&mut self, io: &IoContext<Message>, data: Bytes)
    where
        Message: Send + Clone + Sync + 'static,
    {
        if !data.is_empty() {
            trace!(target:"network", "{}: Sending {} bytes", self.token, data.len());
            self.send_queue.push_back(Cursor::new(data));
            if !self.interest.is_writable() {
                self.interest.insert(Ready::writable());
            }
            io.update_registration(self.token).ok();
        }
    }

    /// Check if this connection has data to be sent.
    pub fn is_sending(&self) -> bool {
        self.interest.is_writable()
    }

    /// Writable IO handler. Called when the socket is ready to send.
    pub fn writable<Message>(&mut self, io: &IoContext<Message>) -> Result<WriteStatus, Error>
    where
        Message: Send + Clone + Sync + 'static,
    {
        {
            let buf = match self.send_queue.front_mut() {
                Some(buf) => buf,
                None => return Ok(WriteStatus::Complete),
            };
            let send_size = buf.get_ref().len();
            let pos = buf.position() as usize;
            if (pos as usize) >= send_size {
                warn!(target:"net", "Unexpected connection data");
                return Ok(WriteStatus::Complete);
            }

            match self.socket.try_write(Buf::bytes(&buf)) {
                Ok(Some(size)) if (pos + size) < send_size => {
                    buf.advance(size);
                    Ok(WriteStatus::Ongoing)
                }
                Ok(Some(size)) if (pos + size) == send_size => {
                    trace!(target:"network", "{}: Wrote {} bytes", self.token, send_size);
                    Ok(WriteStatus::Complete)
                }
                Ok(Some(_)) => {
                    panic!("Wrote past buffer");
                }
                Ok(None) => Ok(WriteStatus::Ongoing),
                Err(e) => Err(e)?,
            }
        }
        .and_then(|r| {
            if r == WriteStatus::Complete {
                self.send_queue.pop_front();
            }
            if self.send_queue.is_empty() {
                self.interest.remove(Ready::writable());
            }
            io.update_registration(self.token)?;
            Ok(r)
        })
    }
}

/// Low level tcp connection
pub type Connection = GenericConnection<TcpStream>;

impl Connection {
    /// Create a new connection with given id and socket.
    pub fn new(token: StreamToken, socket: TcpStream) -> Connection {
        Connection {
            token,
            socket,
            send_queue: VecDeque::new(),
            rec_buf: Bytes::new(),
            rec_size: 0,
            interest: Ready::hup() | Ready::readable(),
            registered: AtomicBool::new(false),
        }
    }

    /// Get socket token
    pub fn token(&self) -> StreamToken {
        self.token
    }

    /// Get remote peer address
    pub fn remote_addr(&self) -> io::Result<SocketAddr> {
        self.socket.peer_addr()
    }

    /// Get remote peer address string
    pub fn remote_addr_str(&self) -> String {
        self.socket
            .peer_addr()
            .map(|a| a.to_string())
            .unwrap_or_else(|_| "Unknown".to_owned())
    }

    /// Get local peer address string
    pub fn local_addr_str(&self) -> String {
        self.socket
            .local_addr()
            .map(|a| a.to_string())
            .unwrap_or_else(|_| "Unknown".to_owned())
    }

    /// Clone this connection. Clears the receiving buffer of the returned connection.
    pub fn try_clone(&self) -> io::Result<Self> {
        Ok(Connection {
            token: self.token,
            socket: self.socket.try_clone()?,
            rec_buf: Vec::new(),
            rec_size: 0,
            send_queue: self.send_queue.clone(),
            interest: Ready::hup(),
            registered: AtomicBool::new(false),
        })
    }

    /// Register this connection with the IO event loop.
    pub fn register_socket<Host: Handler>(
        &self,
        reg: Token,
        event_loop: &mut EventLoop<Host>,
    ) -> io::Result<()> {
        if self.registered.load(AtomicOrdering::SeqCst) {
            return Ok(());
        }
        trace!(target: "network", "connection register; token={:?}", reg);
        if let Err(e) = event_loop.register(
            &self.socket,
            reg,
            self.interest,
            PollOpt::edge(), /* | PollOpt::oneshot() */
        ) {
            // TODO: oneshot is broken on windows
            trace!(target: "network", "Failed to register {:?}, {:?}", reg, e);
        }
        self.registered.store(true, AtomicOrdering::SeqCst);
        Ok(())
    }

    /// Update connection registration. Should be called at the end of the IO handler.
    pub fn update_socket<Host: Handler>(
        &self,
        reg: Token,
        event_loop: &mut EventLoop<Host>,
    ) -> io::Result<()> {
        trace!(target: "network", "connection reregister; token={:?}", reg);
        if !self.registered.load(AtomicOrdering::SeqCst) {
            self.register_socket(reg, event_loop)
        } else {
            event_loop
                .reregister(
                    &self.socket,
                    reg,
                    self.interest,
                    PollOpt::edge(), /* | PollOpt::oneshot() */
                )
                .unwrap_or_else(|e| {
                    // TODO: oneshot is broken on windows
                    trace!(target: "network", "Failed to reregister {:?}, {:?}", reg, e);
                });
            Ok(())
        }
    }

    /// Delete connection registration. Should be called at the end of the IO handler.
    pub fn deregister_socket<Host: Handler>(
        &self,
        event_loop: &mut EventLoop<Host>,
    ) -> io::Result<()> {
        trace!(target: "network", "connection deregister; token={:?}", self.token);
        event_loop.deregister(&self.socket).ok(); // ignore errors here
        Ok(())
    }
}

/// Connection write status.
#[derive(PartialEq, Eq)]
pub enum WriteStatus {
    /// Some data is still pending for current packet
    Ongoing,
    /// All data sent.
    Complete,
}

/// `RLPx` packet
pub struct Packet {
    pub protocol: u16,
    pub data: Bytes,
}

/// Encrypted connection receiving state.
enum EncryptedConnectionState {
    /// Reading a header.
    Header,
    /// Reading the rest of the packet.
    Payload,
}

/// Connection implementing `RLPx` framing
/// https://github.com/ethereum/devp2p/blob/master/rlpx.md#framing
pub struct EncryptedConnection {
    /// Underlying tcp connection
    pub connection: Connection,
    /// Egress data encryptor
    encoder: AesCtr256,
    /// Ingress data decryptor
    decoder: AesCtr256,
    /// Ingress data decryptor
    mac_encoder_key: Secret,
    /// MAC for egress data
    egress_mac: Keccak,
    /// MAC for ingress data
    ingress_mac: Keccak,
    /// Read state
    read_state: EncryptedConnectionState,
    /// Protocol id for the last received packet
    protocol_id: u16,
    /// Payload expected to be received for the last header.
    payload_len: usize,
}

const NULL_IV: [u8; 16] = [0; 16];
impl EncryptedConnection {
    /// Create an encrypted connection out of the handshake.
    pub fn new(handshake: &mut Handshake) -> Result<EncryptedConnection, Error> {
        let shared = parity_crypto::publickey::ecdh::agree(
            handshake.ecdhe.secret(),
            &handshake.remote_ephemeral,
        )?;
        let mut nonce_material = H512::default();
        if handshake.originated {
            (&mut nonce_material[0..32]).copy_from_slice(handshake.remote_nonce.as_bytes());
            (&mut nonce_material[32..64]).copy_from_slice(handshake.nonce.as_bytes());
        } else {
            (&mut nonce_material[0..32]).copy_from_slice(handshake.nonce.as_bytes());
            (&mut nonce_material[32..64]).copy_from_slice(handshake.remote_nonce.as_bytes());
        }
        let mut key_material = H512::default();
        (&mut key_material[0..32]).copy_from_slice(shared.as_bytes());
        write_keccak(&nonce_material, &mut key_material[32..64]);
        let key_material_keccak = keccak(&key_material);
        (&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());
        let key_material_keccak = keccak(&key_material);
        (&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());

        // Using a 0 IV with CTR is fine as long as the same IV is never reused with the same key.
        // This is the case here: ecdh creates a new secret which will be the symmetric key used
        // only for this session the 0 IV is only use once with this secret, so we are in the case
        // of same IV use for different key.
        let encoder = AesCtr256::new(&key_material[32..64], &NULL_IV)?;
        let decoder = AesCtr256::new(&key_material[32..64], &NULL_IV)?;

        let key_material_keccak = keccak(&key_material);
        (&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());

        let mac_encoder_key: Secret = Secret::copy_from_slice(&key_material[32..64])
            .expect("can create Secret from 32 bytes; qed");

        let mut egress_mac = Keccak::new_keccak256();
        let mut mac_material = H256::from_slice(&key_material[32..64]) ^ handshake.remote_nonce;
        egress_mac.update(mac_material.as_bytes());
        egress_mac.update(if handshake.originated {
            &handshake.auth_cipher
        } else {
            &handshake.ack_cipher
        });

        let mut ingress_mac = Keccak::new_keccak256();
        mac_material = H256::from_slice(&key_material[32..64]) ^ handshake.nonce;
        ingress_mac.update(mac_material.as_bytes());
        ingress_mac.update(if handshake.originated {
            &handshake.ack_cipher
        } else {
            &handshake.auth_cipher
        });

        let old_connection = handshake.connection.try_clone()?;
        let connection = ::std::mem::replace(&mut handshake.connection, old_connection);
        let mut enc = EncryptedConnection {
            connection,
            encoder,
            decoder,
            mac_encoder_key,
            egress_mac,
            ingress_mac,
            read_state: EncryptedConnectionState::Header,
            protocol_id: 0,
            payload_len: 0,
        };
        enc.connection.expect(ENCRYPTED_HEADER_LEN);
        Ok(enc)
    }

    /// Send a packet
    pub fn send_packet<Message>(
        &mut self,
        io: &IoContext<Message>,
        payload: &[u8],
    ) -> Result<(), Error>
    where
        Message: Send + Clone + Sync + 'static,
    {
        const HEADER_LEN: usize = 16;
        let mut header = RlpStream::new();
        let len = payload.len();
        if len > MAX_PAYLOAD_SIZE {
            bail!(ErrorKind::OversizedPacket);
        }

        header.append_raw(&[(len >> 16) as u8, (len >> 8) as u8, len as u8], 1);
        header.append_raw(&[0xc2u8, 0x80u8, 0x80u8], 1);
        let padding = (16 - (len % 16)) % 16;

        let mut packet = vec![0u8; 16 + 16 + len + padding + 16];
        let mut header = header.out();
        header.resize(HEADER_LEN, 0u8);
        &mut packet[..HEADER_LEN].copy_from_slice(&mut header);
        self.encoder.encrypt(&mut packet[..HEADER_LEN])?;
        EncryptedConnection::update_mac(
            &mut self.egress_mac,
            &self.mac_encoder_key,
            &packet[..HEADER_LEN],
        )?;
        self.egress_mac
            .clone()
            .finalize(&mut packet[HEADER_LEN..32]);
        &mut packet[32..32 + len].copy_from_slice(payload);
        self.encoder.encrypt(&mut packet[32..32 + len])?;
        if padding != 0 {
            self.encoder
                .encrypt(&mut packet[(32 + len)..(32 + len + padding)])?;
        }
        self.egress_mac.update(&packet[32..(32 + len + padding)]);
        EncryptedConnection::update_mac(&mut self.egress_mac, &self.mac_encoder_key, &[0u8; 0])?;
        self.egress_mac
            .clone()
            .finalize(&mut packet[(32 + len + padding)..]);
        self.connection.send(io, packet);

        Ok(())
    }

    /// Decrypt and authenticate an incoming packet header. Prepare for receiving payload.
    fn read_header(&mut self, mut header: Bytes) -> Result<(), Error> {
        if header.len() != ENCRYPTED_HEADER_LEN {
            return Err(ErrorKind::Auth.into());
        }
        EncryptedConnection::update_mac(
            &mut self.ingress_mac,
            &self.mac_encoder_key,
            &header[0..16],
        )?;
        {
            let mac = &header[16..];
            let mut expected = H256::zero();
            self.ingress_mac.clone().finalize(expected.as_bytes_mut());
            if mac != &expected[0..16] {
                return Err(ErrorKind::Auth.into());
            }
        }
        self.decoder.decrypt(&mut header[..16])?;

        let length = ((((header[0] as u32) << 8) + (header[1] as u32)) << 8) + (header[2] as u32);
        let header_rlp = Rlp::new(&header[3..6]);
        let protocol_id = header_rlp.val_at::<u16>(0)?;

        self.payload_len = length as usize;
        self.protocol_id = protocol_id;
        self.read_state = EncryptedConnectionState::Payload;

        let padding = (16 - (length % 16)) % 16;
        let full_length = length + padding + 16;
        self.connection.expect(full_length as usize);
        Ok(())
    }

    /// Decrypt and authenticate packet payload.
    fn read_payload(&mut self, mut payload: Bytes) -> Result<Packet, Error> {
        let padding = (16 - (self.payload_len % 16)) % 16;
        let full_length = self.payload_len + padding + 16;
        if payload.len() != full_length {
            return Err(ErrorKind::Auth.into());
        }
        self.ingress_mac.update(&payload[0..payload.len() - 16]);
        EncryptedConnection::update_mac(&mut self.ingress_mac, &self.mac_encoder_key, &[0u8; 0])?;

        {
            let mac = &payload[(payload.len() - 16)..];
            let mut expected = H128::default();
            self.ingress_mac.clone().finalize(expected.as_bytes_mut());
            if mac != &expected[..] {
                return Err(ErrorKind::Auth.into());
            }
        }
        self.decoder
            .decrypt(&mut payload[..self.payload_len + padding])?;
        payload.truncate(self.payload_len);
        Ok(Packet {
            protocol: self.protocol_id,
            data: payload,
        })
    }

    /// Update MAC after reading or writing any data.
    fn update_mac(mac: &mut Keccak, mac_encoder_key: &Secret, seed: &[u8]) -> Result<(), Error> {
        let mut prev = H128::default();
        mac.clone().finalize(prev.as_bytes_mut());
        let mut enc = H128::default();
        &mut enc[..].copy_from_slice(prev.as_bytes());
        let mac_encoder = AesEcb256::new(mac_encoder_key.as_bytes())?;
        mac_encoder.encrypt(enc.as_bytes_mut())?;

        enc = enc
            ^ if seed.is_empty() {
                prev
            } else {
                H128::from_slice(seed)
            };
        mac.update(enc.as_bytes());
        Ok(())
    }

    /// Readable IO handler. Tracker receive status and returns decoded packet if available.
    pub fn readable<Message>(&mut self, io: &IoContext<Message>) -> Result<Option<Packet>, Error>
    where
        Message: Send + Clone + Sync + 'static,
    {
        io.clear_timer(self.connection.token)?;
        if let EncryptedConnectionState::Header = self.read_state {
            if let Some(data) = self.connection.readable()? {
                self.read_header(data)?;
                io.register_timer(self.connection.token, RECEIVE_PAYLOAD)?;
            }
        };
        if let EncryptedConnectionState::Payload = self.read_state {
            match self.connection.readable()? {
                Some(data) => {
                    self.read_state = EncryptedConnectionState::Header;
                    self.connection.expect(ENCRYPTED_HEADER_LEN);
                    Ok(Some(self.read_payload(data)?))
                }
                None => Ok(None),
            }
        } else {
            Ok(None)
        }
    }

    /// Writable IO handler. Processes send queue.
    pub fn writable<Message>(&mut self, io: &IoContext<Message>) -> Result<(), Error>
    where
        Message: Send + Clone + Sync + 'static,
    {
        self.connection.writable(io)?;
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use std::{
        cmp,
        collections::VecDeque,
        io::{Cursor, Error, ErrorKind, Read, Result, Write},
        sync::atomic::AtomicBool,
    };

    use super::*;
    use io::*;
    use mio::Ready;
    use parity_bytes::Bytes;

    pub struct TestSocket {
        pub read_buffer: Vec<u8>,
        pub write_buffer: Vec<u8>,
        pub cursor: usize,
        pub buf_size: usize,
    }

    impl Default for TestSocket {
        fn default() -> Self {
            TestSocket::new()
        }
    }

    impl TestSocket {
        pub fn new() -> Self {
            TestSocket {
                read_buffer: vec![],
                write_buffer: vec![],
                cursor: 0,
                buf_size: 0,
            }
        }

        pub fn new_buf(buf_size: usize) -> TestSocket {
            TestSocket {
                read_buffer: vec![],
                write_buffer: vec![],
                cursor: 0,
                buf_size,
            }
        }
    }

    impl Read for TestSocket {
        fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
            let end_position = cmp::min(self.read_buffer.len(), self.cursor + buf.len());
            if self.cursor > end_position {
                return Ok(0);
            }
            let len = cmp::max(end_position - self.cursor, 0);
            match len {
                0 => Ok(0),
                _ => {
                    for i in self.cursor..end_position {
                        buf[i - self.cursor] = self.read_buffer[i];
                    }
                    self.cursor = end_position;
                    Ok(len)
                }
            }
        }
    }

    impl Write for TestSocket {
        fn write(&mut self, buf: &[u8]) -> Result<usize> {
            if self.buf_size == 0 || buf.len() < self.buf_size {
                self.write_buffer.extend(buf.iter().cloned());
                Ok(buf.len())
            } else {
                self.write_buffer
                    .extend(buf.iter().take(self.buf_size).cloned());
                Ok(self.buf_size)
            }
        }

        fn flush(&mut self) -> Result<()> {
            unimplemented!();
        }
    }

    impl GenericSocket for TestSocket {}

    struct TestBrokenSocket {
        error: String,
    }

    impl Read for TestBrokenSocket {
        fn read(&mut self, _: &mut [u8]) -> Result<usize> {
            Err(Error::new(ErrorKind::Other, self.error.clone()))
        }
    }

    impl Write for TestBrokenSocket {
        fn write(&mut self, _: &[u8]) -> Result<usize> {
            Err(Error::new(ErrorKind::Other, self.error.clone()))
        }

        fn flush(&mut self) -> Result<()> {
            unimplemented!();
        }
    }

    impl GenericSocket for TestBrokenSocket {}

    type TestConnection = GenericConnection<TestSocket>;

    impl Default for TestConnection {
        fn default() -> Self {
            TestConnection::new()
        }
    }

    impl TestConnection {
        pub fn new() -> Self {
            TestConnection {
                token: 999998888usize,
                socket: TestSocket::new(),
                send_queue: VecDeque::new(),
                rec_buf: Bytes::new(),
                rec_size: 0,
                interest: Ready::hup() | Ready::readable(),
                registered: AtomicBool::new(false),
            }
        }
    }

    type TestBrokenConnection = GenericConnection<TestBrokenSocket>;

    impl Default for TestBrokenConnection {
        fn default() -> Self {
            TestBrokenConnection::new()
        }
    }

    impl TestBrokenConnection {
        pub fn new() -> Self {
            TestBrokenConnection {
                token: 999998888usize,
                socket: TestBrokenSocket {
                    error: "test broken socket".to_owned(),
                },
                send_queue: VecDeque::new(),
                rec_buf: Bytes::new(),
                rec_size: 0,
                interest: Ready::hup() | Ready::readable(),
                registered: AtomicBool::new(false),
            }
        }
    }

    fn test_io() -> IoContext<i32> {
        IoContext::new(IoChannel::disconnected(), 0)
    }

    #[test]
    pub fn test_encryption() {
        use ethereum_types::{H128, H256};
        use std::str::FromStr;
        let key =
            H256::from_str("2212767d793a7a3d66f869ae324dd11bd17044b82c9f463b8a541a4d089efec5")
                .unwrap();
        let before = H128::from_str("12532abaec065082a3cf1da7d0136f15").unwrap();
        let before2 = H128::from_str("7e99f682356fdfbc6b67a9562787b18a").unwrap();
        let after = H128::from_str("89464c6b04e7c99e555c81d3f7266a05").unwrap();
        let after2 = H128::from_str("85c070030589ef9c7a2879b3a8489316").unwrap();

        let mut got = H128::default();

        let encoder = AesEcb256::new(key.as_bytes()).unwrap();
        got.as_bytes_mut().copy_from_slice(before.as_bytes());
        encoder.encrypt(got.as_bytes_mut()).unwrap();
        assert_eq!(got, after);

        let encoder = AesEcb256::new(key.as_bytes()).unwrap();
        got = H128::default();
        got.as_bytes_mut().copy_from_slice(&before2.as_bytes());
        encoder.encrypt(got.as_bytes_mut()).unwrap();
        assert_eq!(got, after2);
    }

    #[test]
    fn connection_expect() {
        let mut connection = TestConnection::new();
        connection.expect(1024);
        assert_eq!(1024, connection.rec_size);
    }

    #[test]
    fn connection_write_empty() {
        let mut connection = TestConnection::new();
        let status = connection.writable(&test_io());
        assert!(status.is_ok());
        assert!(WriteStatus::Complete == status.unwrap());
    }

    #[test]
    fn connection_write() {
        let mut connection = TestConnection::new();
        let data = Cursor::new(vec![0; 10240]);
        connection.send_queue.push_back(data);

        let status = connection.writable(&test_io());
        assert!(status.is_ok());
        assert!(WriteStatus::Complete == status.unwrap());
        assert_eq!(10240, connection.socket.write_buffer.len());
    }

    #[test]
    fn connection_write_is_buffered() {
        let mut connection = TestConnection::new();
        connection.socket = TestSocket::new_buf(1024);
        let data = Cursor::new(vec![0; 10240]);
        connection.send_queue.push_back(data);

        let status = connection.writable(&test_io());

        assert!(status.is_ok());
        assert!(WriteStatus::Ongoing == status.unwrap());
        assert_eq!(1024, connection.socket.write_buffer.len());
    }

    #[test]
    fn connection_write_to_broken() {
        let mut connection = TestBrokenConnection::new();
        let data = Cursor::new(vec![0; 10240]);
        connection.send_queue.push_back(data);

        let status = connection.writable(&test_io());

        assert!(!status.is_ok());
        assert_eq!(1, connection.send_queue.len());
    }

    #[test]
    fn connection_read() {
        let mut connection = TestConnection::new();
        connection.rec_size = 2048;
        connection.rec_buf = vec![10; 1024];
        connection.socket.read_buffer = vec![99; 2048];

        let status = connection.readable();

        assert!(status.is_ok());
        assert_eq!(1024, connection.socket.cursor);
    }

    #[test]
    fn connection_read_from_broken() {
        let mut connection = TestBrokenConnection::new();
        connection.rec_size = 2048;

        let status = connection.readable();
        assert!(!status.is_ok());
        assert_eq!(0, connection.rec_buf.len());
    }

    #[test]
    fn connection_read_nothing() {
        let mut connection = TestConnection::new();
        connection.rec_size = 2048;

        let status = connection.readable();

        assert!(status.is_ok());
        assert_eq!(0, connection.rec_buf.len());
    }

    #[test]
    fn connection_read_full() {
        let mut connection = TestConnection::new();
        connection.rec_size = 1024;
        connection.rec_buf = vec![76; 1024];

        let status = connection.readable();

        assert!(status.is_ok());
        assert_eq!(0, connection.socket.cursor);
    }
}