1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.

// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with OpenEthereum.  If not, see <http://www.gnu.org/licenses/>.

//! Statistical functions and helpers.

use std::{
    iter::FromIterator,
    ops::{Add, Deref, Div, Sub},
    time::Instant,
};

#[macro_use]
extern crate log;
pub extern crate prometheus;

pub struct PrometheusRegistry {
    prefix: String,
    registry: prometheus::Registry,
}

impl PrometheusRegistry {
    /// Create a new instance with the specified prefix
    pub fn new(prefix: String) -> Self {
        Self {
            prefix,
            registry: prometheus::Registry::new(),
        }
    }

    /// Get internal registry
    pub fn registry(&self) -> &prometheus::Registry {
        &self.registry
    }

    /// Adds a new prometheus counter with the specified value
    pub fn register_counter(&mut self, name: &str, help: &str, value: i64) {
        let name = format!("{}{}", self.prefix, name);
        let c = prometheus::IntCounter::new(name.as_str(), help)
            .expect("name and help must be non-empty");
        c.inc_by(value);
        self.registry
            .register(Box::new(c))
            .expect("prometheus identifiers must be unique");
    }

    /// Adds a new prometheus gauge with the specified gauge
    pub fn register_gauge(&mut self, name: &str, help: &str, value: i64) {
        let name = format!("{}{}", self.prefix, name);
        let g = prometheus::IntGauge::new(name.as_str(), help)
            .expect("name and help must be non-empty");
        g.set(value);
        self.registry
            .register(Box::new(g))
            .expect("prometheus identifiers must be are unique");
    }

    /// Adds a new prometheus counter with the time spent in running the specified function
    pub fn register_optime<F: Fn() -> T, T>(&mut self, name: &str, f: &F) -> T {
        let start = Instant::now();
        let t = f();
        let elapsed = start.elapsed();
        self.register_gauge(
            &format!("optime_{}", name),
            &format!("Time to perform {}", name),
            elapsed.as_millis() as i64,
        );
        t
    }
}

/// Implements a prometheus metrics collector
pub trait PrometheusMetrics {
    fn prometheus_metrics(&self, registry: &mut PrometheusRegistry);
}

/// Sorted corpus of data.
#[derive(Debug, Clone, PartialEq)]
pub struct Corpus<T>(Vec<T>);

impl<T: Ord> From<Vec<T>> for Corpus<T> {
    fn from(mut data: Vec<T>) -> Self {
        data.sort();
        Corpus(data)
    }
}

impl<T: Ord> FromIterator<T> for Corpus<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
        iterable.into_iter().collect::<Vec<_>>().into()
    }
}

impl<T> Deref for Corpus<T> {
    type Target = [T];

    fn deref(&self) -> &[T] {
        &self.0[..]
    }
}

impl<T: Ord> Corpus<T> {
    /// Get given percentile (approximated).
    pub fn percentile(&self, val: usize) -> Option<&T> {
        let len = self.0.len();
        let x = val * len / 100;
        let x = ::std::cmp::min(x, len);
        if x == 0 {
            return None;
        }

        self.0.get(x - 1)
    }

    /// Get the median element, if it exists.
    pub fn median(&self) -> Option<&T> {
        self.0.get(self.0.len() / 2)
    }

    /// Whether the corpus is empty.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Number of elements in the corpus.
    pub fn len(&self) -> usize {
        self.0.len()
    }
}

impl<T: Ord + Copy + ::std::fmt::Display> Corpus<T>
where
    T: Add<Output = T> + Sub<Output = T> + Div<Output = T> + From<usize>,
{
    /// Create a histogram of this corpus if it at least spans the buckets. Bounds are left closed.
    /// Excludes outliers.
    pub fn histogram(&self, bucket_number: usize) -> Option<Histogram<T>> {
        // TODO: get outliers properly.
        let upto = self.len() - self.len() / 40;
        Histogram::create(&self.0[..upto], bucket_number)
    }
}

/// Discretised histogram.
#[derive(Debug, PartialEq)]
pub struct Histogram<T> {
    /// Bounds of each bucket.
    pub bucket_bounds: Vec<T>,
    /// Count within each bucket.
    pub counts: Vec<usize>,
}

impl<T: Ord + Copy + ::std::fmt::Display> Histogram<T>
where
    T: Add<Output = T> + Sub<Output = T> + Div<Output = T> + From<usize>,
{
    // Histogram of a sorted corpus if it at least spans the buckets. Bounds are left closed.
    fn create(corpus: &[T], bucket_number: usize) -> Option<Histogram<T>> {
        if corpus.len() < 1 {
            return None;
        }
        let corpus_end = corpus
            .last()
            .expect("there is at least 1 element; qed")
            .clone();
        let corpus_start = corpus
            .first()
            .expect("there is at least 1 element; qed")
            .clone();
        trace!(target: "stats", "Computing histogram from {} to {} with {} buckets.", corpus_start, corpus_end, bucket_number);
        // Bucket needs to be at least 1 wide.
        let bucket_size = {
            // Round up to get the entire corpus included.
            let raw_bucket_size =
                (corpus_end - corpus_start + bucket_number.into()) / bucket_number.into();
            if raw_bucket_size == 0.into() {
                1.into()
            } else {
                raw_bucket_size
            }
        };
        let mut bucket_end = corpus_start + bucket_size;

        let mut bucket_bounds = vec![corpus_start; bucket_number + 1];
        let mut counts = vec![0; bucket_number];
        let mut corpus_i = 0;
        // Go through the corpus adding to buckets.
        for bucket in 0..bucket_number {
            while corpus.get(corpus_i).map_or(false, |v| v < &bucket_end) {
                // Initialized to size bucket_number above; iterates up to bucket_number; qed
                counts[bucket] += 1;
                corpus_i += 1;
            }
            // Initialized to size bucket_number + 1 above; iterates up to bucket_number; subscript is in range; qed
            bucket_bounds[bucket + 1] = bucket_end;
            bucket_end = bucket_end + bucket_size;
        }
        Some(Histogram {
            bucket_bounds: bucket_bounds,
            counts: counts,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn check_corpus() {
        let corpus = Corpus::from(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
        assert_eq!(corpus.percentile(0), None);
        assert_eq!(corpus.percentile(1), None);
        assert_eq!(corpus.percentile(101), Some(&10));
        assert_eq!(corpus.percentile(100), Some(&10));
        assert_eq!(corpus.percentile(50), Some(&5));
        assert_eq!(corpus.percentile(60), Some(&6));
        assert_eq!(corpus.median(), Some(&6));
    }

    #[test]
    fn check_histogram() {
        let hist = Histogram::create(
            &[
                643, 689, 1408, 2000, 2296, 2512, 4250, 4320, 4842, 4958, 5804, 6065, 6098, 6354,
                7002, 7145, 7845, 8589, 8593, 8895,
            ],
            5,
        )
        .unwrap();
        let correct_bounds: Vec<usize> = vec![643, 2294, 3945, 5596, 7247, 8898];
        assert_eq!(
            Histogram {
                bucket_bounds: correct_bounds,
                counts: vec![4, 2, 4, 6, 4]
            },
            hist
        );
    }

    #[test]
    fn smaller_data_range_than_bucket_range() {
        assert_eq!(
            Histogram::create(&[1, 2, 2], 3),
            Some(Histogram {
                bucket_bounds: vec![1, 2, 3, 4],
                counts: vec![1, 2, 0]
            })
        );
    }

    #[test]
    fn data_range_is_not_multiple_of_bucket_range() {
        assert_eq!(
            Histogram::create(&[1, 2, 5], 2),
            Some(Histogram {
                bucket_bounds: vec![1, 4, 7],
                counts: vec![2, 1]
            })
        );
    }

    #[test]
    fn data_range_is_multiple_of_bucket_range() {
        assert_eq!(
            Histogram::create(&[1, 2, 6], 2),
            Some(Histogram {
                bucket_bounds: vec![1, 4, 7],
                counts: vec![2, 1]
            })
        );
    }

    #[test]
    fn none_when_too_few_data() {
        assert!(Histogram::<usize>::create(&[], 1).is_none());
    }
}