1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
//! A simple timer, used to enqueue operations meant to be executed at
//! a given time or after a given delay.
extern crate chrono;
use std::cmp::Ordering;
use std::thread;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering as AtomicOrdering;
use std::sync::{Arc, Mutex, Condvar};
use std::sync::mpsc::{channel, Sender};
use std::collections::BinaryHeap;
use chrono::{Duration, DateTime};
use chrono::offset::Utc;
/// An item scheduled for delayed execution.
struct Schedule<T> {
/// The instant at which to execute.
date: DateTime<Utc>,
/// The schedule data.
data : T,
/// A mechanism to cancel execution of an item.
guard: Guard,
/// If `Some(d)`, the item must be repeated every interval of
/// length `d`, until cancelled.
repeat: Option<Duration>
}
impl <T> Ord for Schedule<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.date.cmp(&other.date).reverse()
}
}
impl <T> PartialOrd for Schedule<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.date.partial_cmp(&other.date).map(|ord| ord.reverse())
}
}
impl <T> Eq for Schedule<T> {
}
impl <T> PartialEq for Schedule<T> {
fn eq(&self, other: &Self) -> bool {
self.date.eq(&other.date)
}
}
/// An operation to be sent across threads.
enum Op<T> {
/// Schedule a new item for execution.
Schedule(Schedule<T>),
/// Stop the thread.
Stop
}
/// A mutex-based kind-of-channel used to communicate between the
/// Communication thread and the Scheuler thread.
struct WaiterChannel<T> {
/// Pending messages.
messages: Mutex<Vec<Op<T>>>,
/// A condition variable used for waiting.
condvar: Condvar,
}
impl <T> WaiterChannel<T> {
fn with_capacity(cap: usize) -> Self {
WaiterChannel {
messages: Mutex::new(Vec::with_capacity(cap)),
condvar: Condvar::new(),
}
}
}
/// A trait that allows configurable execution of scheduled item
/// on the scheduler thread.
trait Executor<T> {
// Due to difference in use between Box<FnMut()> and most other data
// types, this trait requires implementors to provide two implementations
// of execute. While both of these functions execute the data item
// they differ on whether they make an equivalent data item available
// to the Scheduler to store in recurring schedules.
//
// execute() is called whenever a non-recurring data item needs
// to be executed, and consumes the data item in the process.
//
// execute_clone() is called whenever a recurring data item needs
// to be executed, and produces a new equivalent data item. This
// function should be more or less equivalent to:
//
// fn execute_clone(&mut self, data : T) -> T {
// self.execute(data.clone());
// data
// }
fn execute(&mut self, data : T);
fn execute_clone(&mut self, data : T) -> T;
}
/// An executor implementation for executing callbacks on the scheduler
/// thread.
struct CallbackExecutor;
impl Executor<Box<FnMut() + Send>> for CallbackExecutor {
fn execute(&mut self, mut data : Box<FnMut() + Send>) {
data();
}
fn execute_clone(&mut self, mut data : Box<FnMut() + Send>) -> Box<FnMut() + Send> {
data();
data
}
}
/// An executor implementation for delivering messages to a channel.
struct DeliveryExecutor<T>
where T : 'static + Send {
/// The channel to deliver messages to.
tx : Sender<T>
}
impl <T> Executor<T> for DeliveryExecutor<T>
where T : 'static + Send + Clone {
fn execute(&mut self, data : T) {
let _ = self.tx.send(data);
}
fn execute_clone(&mut self, data : T) -> T {
let _ = self.tx.send(data.clone());
data
}
}
struct Scheduler<T,E> where E : Executor<T> {
waiter: Arc<WaiterChannel<T>>,
heap: BinaryHeap<Schedule<T>>,
executor: E
}
impl <T,E> Scheduler<T,E> where E : Executor<T> {
fn with_capacity(waiter: Arc<WaiterChannel<T>>, executor : E, capacity: usize) -> Self {
Scheduler {
waiter: waiter,
executor: executor,
heap: BinaryHeap::with_capacity(capacity),
}
}
fn run(&mut self) {
enum Sleep {
NotAtAll,
UntilAwakened,
AtMost(Duration)
}
let ref waiter = *self.waiter;
loop {
let mut lock = waiter.messages.lock().unwrap();
// Pop all messages.
for msg in lock.drain(..) {
match msg {
Op::Stop => {
return;
}
Op::Schedule(sched) => self.heap.push(sched),
}
}
// Pop all the callbacks that are ready.
// If we don't find
let mut sleep = Sleep::UntilAwakened;
loop {
let now = Utc::now();
if let Some(sched) = self.heap.peek() {
if sched.date > now {
// First item is not ready yet, so we need to
// wait until it is or something happens.
sleep = Sleep::AtMost(sched.date.signed_duration_since(now));
break;
}
} else {
// Schedule is empty, nothing to do, wait until something happens.
break;
}
// At this stage, we have an item that has reached
// execution time. The `unwrap()` is guaranteed to
// succeed.
let sched = self.heap.pop().unwrap();
if !sched.guard.should_execute() {
// Execution has been cancelled, skip this item.
continue;
}
if let Some(delta) = sched.repeat {
let data = self.executor.execute_clone(sched.data);
// This is a repeating timer, so we need to
// enqueue the next call.
sleep = Sleep::NotAtAll;
self.heap.push(Schedule {
date: sched.date + delta,
data: data,
guard: sched.guard,
repeat: Some(delta)
});
} else {
self.executor.execute(sched.data);
}
}
match sleep {
Sleep::UntilAwakened => {
let _ = waiter.condvar.wait(lock);
},
Sleep::AtMost(delay) => {
let sec = delay.num_seconds();
let ns = (delay - Duration::seconds(sec)).num_nanoseconds().unwrap(); // This `unwrap()` asserts that the number of ns is not > 1_000_000_000. Since we just substracted the number of seconds, the assertion should always pass.
let duration = std::time::Duration::new(sec as u64, ns as u32);
let _ = waiter.condvar.wait_timeout(lock, duration);
},
Sleep::NotAtAll => {}
}
}
}
}
/// Shared coordination logic for timer threads.
pub struct TimerBase<T>
where T : 'static + Send {
/// Sender used to communicate with the _Communication_ thread. In
/// turn, this thread will send
tx: Sender<Op<T>>,
}
impl <T> Drop for TimerBase<T>
where T : 'static + Send {
/// Stop the timer threads.
fn drop(&mut self) {
self.tx.send(Op::Stop).unwrap();
}
}
impl <T> TimerBase<T>
where T : 'static + Send {
/// Create a timer base.
///
/// This immediatey launches two threads, which will remain
/// launched until the timer is dropped. As expected, the threads
/// spend most of their life waiting for instructions.
fn new<E>(executor : E) -> Self
where E : 'static + Executor<T> + Send {
Self::with_capacity(executor, 32)
}
/// As `new()`, but with a manually specified initial capaicty.
fn with_capacity<E>(executor : E, capacity: usize) -> Self
where E : 'static + Executor<T> + Send {
let waiter_send = Arc::new(WaiterChannel::with_capacity(capacity));
let waiter_recv = waiter_send.clone();
// Spawn a first thread, whose sole role is to dispatch
// messages to the second thread without having to wait too
// long for the mutex.
let (tx, rx) = channel();
thread::spawn(move || {
use Op::*;
let ref waiter = *waiter_send;
for msg in rx.iter() {
let mut vec = waiter.messages.lock().unwrap();
match msg {
Schedule(sched) => {
vec.push(Schedule(sched));
waiter.condvar.notify_one();
}
Stop => {
vec.clear();
vec.push(Op::Stop);
waiter.condvar.notify_one();
return;
}
}
}
});
// Spawn a second thread, in charge of scheduling.
thread::Builder::new().name("Timer thread".to_owned()).spawn(move || {
let mut scheduler = Scheduler::with_capacity(waiter_recv, executor, capacity);
scheduler.run()
}).unwrap();
TimerBase {
tx: tx
}
}
pub fn schedule_with_delay(&self, delay: Duration, data : T) -> Guard {
self.schedule_with_date(Utc::now() + delay, data)
}
pub fn schedule_with_date<D>(&self, date: DateTime<D>, data : T) -> Guard
where D : chrono::offset::TimeZone
{
self.schedule(date, None, data)
}
pub fn schedule_repeating(&self, repeat: Duration, data : T) -> Guard
{
self.schedule(Utc::now() + repeat, Some(repeat), data)
}
pub fn schedule<D>(&self, date: DateTime<D>, repeat: Option<Duration>, data : T) -> Guard
where D : chrono::offset::TimeZone
{
let guard = Guard::new();
self.tx.send(Op::Schedule(Schedule {
date: date.with_timezone(&Utc),
data: data,
guard: guard.clone(),
repeat: repeat
})).unwrap();
guard
}
}
/// A timer, used to schedule execution of callbacks at a later date.
///
/// In the current implementation, each timer is executed as two
/// threads. The _Scheduler_ thread is in charge of maintaining the
/// queue of callbacks to execute and of actually executing them. The
/// _Communication_ thread is in charge of communicating with the
/// _Scheduler_ thread (which requires acquiring a possibly-long-held
/// Mutex) without blocking the caller thread.
pub struct Timer {
base: TimerBase<Box<FnMut() + Send>>
}
impl Timer {
/// Create a timer.
///
/// This immediatey launches two threads, which will remain
/// launched until the timer is dropped. As expected, the threads
/// spend most of their life waiting for instructions.
pub fn new() -> Self {
Timer { base : TimerBase::new(CallbackExecutor) }
}
/// As `new()`, but with a manually specified initial capaicty.
pub fn with_capacity(capacity: usize) -> Self {
Timer { base : TimerBase::with_capacity(CallbackExecutor, capacity) }
}
/// Schedule a callback for execution after a delay.
///
/// Callbacks are guaranteed to never be called before the
/// delay. However, it is possible that they will be called a
/// little after the delay.
///
/// If the delay is negative or 0, the callback is executed as
/// soon as possible.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, execution is cancelled.
///
/// # Performance
///
/// The callback is executed on the Scheduler thread. It should
/// therefore terminate very quickly, or risk causing delaying
/// other callbacks.
///
/// # Failures
///
/// Any failure in `cb` will scheduler thread and progressively
/// contaminate the Timer and the calling thread itself. You have
/// been warned.
///
/// # Example
///
/// ```
/// extern crate timer;
/// extern crate chrono;
/// use std::sync::mpsc::channel;
///
/// let timer = timer::Timer::new();
/// let (tx, rx) = channel();
///
/// let _guard = timer.schedule_with_delay(chrono::Duration::seconds(3), move || {
/// // This closure is executed on the scheduler thread,
/// // so we want to move it away asap.
///
/// let _ignored = tx.send(()); // Avoid unwrapping here.
/// });
///
/// rx.recv().unwrap();
/// println!("This code has been executed after 3 seconds");
/// ```
pub fn schedule_with_delay<F>(&self, delay: Duration, cb: F) -> Guard
where F: 'static + FnMut() + Send {
self.base.schedule_with_delay(delay, Box::new(cb))
}
/// Schedule a callback for execution at a given date.
///
/// Callbacks are guaranteed to never be called before their
/// date. However, it is possible that they will be called a
/// little after it.
///
/// If the date is in the past, the callback is executed as soon
/// as possible.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, execution is cancelled.
///
///
/// # Performance
///
/// The callback is executed on the Scheduler thread. It should
/// therefore terminate very quickly, or risk causing delaying
/// other callbacks.
///
/// # Failures
///
/// Any failure in `cb` will scheduler thread and progressively
/// contaminate the Timer and the calling thread itself. You have
/// been warned.
pub fn schedule_with_date<F, T>(&self, date: DateTime<T>, cb: F) -> Guard
where F: 'static + FnMut() + Send, T : chrono::offset::TimeZone
{
self.base.schedule_with_date(date, Box::new(cb))
}
/// Schedule a callback for execution once per interval.
///
/// Callbacks are guaranteed to never be called before their
/// date. However, it is possible that they will be called a
/// little after it.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, repeat is stopped.
///
///
/// # Performance
///
/// The callback is executed on the Scheduler thread. It should
/// therefore terminate very quickly, or risk causing delaying
/// other callbacks.
///
/// # Failures
///
/// Any failure in `cb` will scheduler thread and progressively
/// contaminate the Timer and the calling thread itself. You have
/// been warned.
///
/// # Example
///
/// ```
/// extern crate timer;
/// extern crate chrono;
/// use std::thread;
/// use std::sync::{Arc, Mutex};
///
/// let timer = timer::Timer::new();
/// // Number of times the callback has been called.
/// let count = Arc::new(Mutex::new(0));
///
/// // Start repeating. Each callback increases `count`.
/// let guard = {
/// let count = count.clone();
/// timer.schedule_repeating(chrono::Duration::milliseconds(5), move || {
/// *count.lock().unwrap() += 1;
/// })
/// };
///
/// // Sleep one second. The callback should be called ~200 times.
/// thread::sleep(std::time::Duration::new(1, 0));
/// let count_result = *count.lock().unwrap();
/// assert!(190 <= count_result && count_result <= 210,
/// "The timer was called {} times", count_result);
///
/// // Now drop the guard. This should stop the timer.
/// drop(guard);
/// thread::sleep(std::time::Duration::new(0, 100));
///
/// // Let's check that the count stops increasing.
/// let count_start = *count.lock().unwrap();
/// thread::sleep(std::time::Duration::new(1, 0));
/// let count_stop = *count.lock().unwrap();
/// assert_eq!(count_start, count_stop);
/// ```
pub fn schedule_repeating<F>(&self, repeat: Duration, cb: F) -> Guard
where F: 'static + FnMut() + Send
{
self.base.schedule_repeating(repeat, Box::new(cb))
}
/// Schedule a callback for execution at a given time, then once
/// per interval. A typical use case is to execute code once per
/// day at 12am.
///
/// Callbacks are guaranteed to never be called before their
/// date. However, it is possible that they will be called a
/// little after it.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, repeat is stopped.
///
///
/// # Performance
///
/// The callback is executed on the Scheduler thread. It should
/// therefore terminate very quickly, or risk causing delaying
/// other callbacks.
///
/// # Failures
///
/// Any failure in `cb` will scheduler thread and progressively
/// contaminate the Timer and the calling thread itself. You have
/// been warned.
pub fn schedule<F, T>(&self, date: DateTime<T>, repeat: Option<Duration>, cb: F) -> Guard
where F: 'static + FnMut() + Send, T : chrono::offset::TimeZone
{
self.base.schedule(date, repeat, Box::new(cb))
}
}
/// A timer, used to schedule delivery of messages at a later date.
///
/// In the current implementation, each timer is executed as two
/// threads. The _Scheduler_ thread is in charge of maintaining the
/// queue of messages to deliver and of actually deliverying them. The
/// _Communication_ thread is in charge of communicating with the
/// _Scheduler_ thread (which requires acquiring a possibly-long-held
/// Mutex) without blocking the caller thread.
///
/// Similar functionality could be implemented using the generic Timer
/// type, however, using MessageTimer has two performance advantages
/// over doing so. First, MessageTimer does not need to heap allocate
/// a closure for each scheduled item, since the messages to queue are
/// passed directly. Second, MessageTimer avoids the dynamic dispatch
/// overhead associated with invoking the closure functions.
pub struct MessageTimer<T>
where T : 'static + Send + Clone {
base: TimerBase<T>
}
impl <T> MessageTimer<T>
where T : 'static + Send + Clone {
/// Create a message timer.
///
/// This immediatey launches two threads, which will remain
/// launched until the timer is dropped. As expected, the threads
/// spend most of their life waiting for instructions.
pub fn new(tx: Sender<T>) -> Self {
MessageTimer {
base : TimerBase::new(DeliveryExecutor { tx : tx })
}
}
/// As `new()`, but with a manually specified initial capaicty.
pub fn with_capacity(tx: Sender<T>, capacity: usize) -> Self {
MessageTimer {
base : TimerBase::with_capacity(DeliveryExecutor { tx : tx }, capacity)
}
}
/// Schedule a message for delivery after a delay.
///
/// Messages are guaranteed to never be delivered before the
/// delay. However, it is possible that they will be delivered a
/// little after the delay.
///
/// If the delay is negative or 0, the message is delivered as
/// soon as possible.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, delivery is cancelled.
///
///
/// # Example
///
/// ```
/// extern crate timer;
/// extern crate chrono;
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
/// let timer = timer::MessageTimer::new(tx);
/// let _guard = timer.schedule_with_delay(chrono::Duration::seconds(3), 3);
///
/// rx.recv().unwrap();
/// println!("This code has been executed after 3 seconds");
/// ```
pub fn schedule_with_delay(&self, delay: Duration, msg : T) -> Guard {
self.base.schedule_with_delay(delay, msg)
}
/// Schedule a message for delivery at a given date.
///
/// Messages are guaranteed to never be delivered before their
/// date. However, it is possible that they will be delivered a
/// little after it.
///
/// If the date is in the past, the message is delivered as soon
/// as possible.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, delivery is cancelled.
///
pub fn schedule_with_date<D>(&self, date: DateTime<D>, msg : T) -> Guard
where D : chrono::offset::TimeZone
{
self.base.schedule_with_date(date, msg)
}
/// Schedule a message for delivery once per interval.
///
/// Messages are guaranteed to never be delivered before their
/// date. However, it is possible that they will be delivered a
/// little after it.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, repeat is stopped.
///
///
/// # Performance
///
/// The message is cloned on the Scheduler thread. Cloning of
/// messages should therefore succeed very quickly, or risk
/// delaying other messages.
///
/// # Failures
///
/// Any failure in cloning of messages will occur on the scheduler thread
/// and will contaminate the Timer and the calling thread itself. You have
/// been warned.
///
/// # Example
///
/// ```
/// extern crate timer;
/// extern crate chrono;
/// use std::sync::mpsc::channel;
///
/// let (tx, rx) = channel();
/// let timer = timer::MessageTimer::new(tx);
///
/// // Start repeating.
/// let guard = timer.schedule_repeating(chrono::Duration::milliseconds(5), 0);
///
/// let mut count = 0;
/// while count < 5 {
/// let _ = rx.recv();
/// println!("Prints every 5 milliseconds");
/// count += 1;
/// }
/// ```
pub fn schedule_repeating(&self, repeat: Duration, msg : T) -> Guard
{
self.base.schedule_repeating(repeat, msg)
}
/// Schedule a message for delivery at a given time, then once
/// per interval. A typical use case is to execute code once per
/// day at 12am.
///
/// Messages are guaranteed to never be delivered before their
/// date. However, it is possible that they will be delivered a
/// little after it.
///
/// This method returns a `Guard` object. If that `Guard` is
/// dropped, repeat is stopped.
///
/// # Performance
///
/// The message is cloned on the Scheduler thread. Cloning of
/// messages should therefore succeed very quickly, or risk
/// delaying other messages.
///
/// # Failures
///
/// Any failure in cloning of messages will occur on the scheduler thread
/// and will contaminate the Timer and the calling thread itself. You have
/// been warned.
pub fn schedule<D>(&self, date: DateTime<D>, repeat: Option<Duration>, msg : T) -> Guard
where D : chrono::offset::TimeZone
{
self.base.schedule(date, repeat, msg)
}
}
/// A value scoping a schedule. When this value is dropped, the
/// schedule is cancelled.
#[derive(Clone)]
pub struct Guard {
should_execute: Arc<AtomicBool>,
ignore_drop: bool
}
impl Guard {
fn new() -> Self {
Guard {
should_execute: Arc::new(AtomicBool::new(true)),
ignore_drop: false
}
}
fn should_execute(&self) -> bool {
self.should_execute.load(AtomicOrdering::Relaxed)
}
/// Ignores the guard, preventing it from disabling the scheduled
/// item. This can be used to avoid maintaining a Guard handle
/// for items that will never be cancelled.
pub fn ignore(mut self) {
self.ignore_drop = true;
}
}
impl Drop for Guard {
/// Cancel a schedule.
fn drop(&mut self) {
if !self.ignore_drop {
self.should_execute.store(false, AtomicOrdering::Relaxed)
}
}
}
#[cfg(test)]
mod tests {
extern crate std;
use super::*;
use std::sync::mpsc::channel;
use std::sync::{Arc, Mutex};
use std::thread;
use chrono::{Duration, Utc};
#[test]
fn test_schedule_with_delay() {
let timer = Timer::new();
let (tx, rx) = channel();
let mut guards = vec![];
// Schedule a number of callbacks in an arbitrary order, make sure
// that they are executed in the right order.
let mut delays = vec![1, 5, 3, -1];
let start = Utc::now();
for i in delays.clone() {
println!("Scheduling for execution in {} seconds", i);
let tx = tx.clone();
guards.push(timer.schedule_with_delay(Duration::seconds(i), move || {
println!("Callback {}", i);
tx.send(i).unwrap();
}));
}
delays.sort();
for (i, msg) in (0..delays.len()).zip(rx.iter()) {
let elapsed = Utc::now().signed_duration_since(start).num_seconds();
println!("Received message {} after {} seconds", msg, elapsed);
assert_eq!(msg, delays[i]);
assert!(delays[i] <= elapsed && elapsed <= delays[i] + 3, "We have waited {} seconds, expecting [{}, {}]", elapsed, delays[i], delays[i] + 3);
}
// Now make sure that callbacks that are designed to be executed
// immediately are executed quickly.
let start = Utc::now();
for i in vec![10, 0] {
println!("Scheduling for execution in {} seconds", i);
let tx = tx.clone();
guards.push(timer.schedule_with_delay(Duration::seconds(i), move || {
println!("Callback {}", i);
tx.send(i).unwrap();
}));
}
assert_eq!(rx.recv().unwrap(), 0);
assert!(Utc::now().signed_duration_since(start) <= Duration::seconds(1));
}
#[test]
fn test_message_timer() {
let (tx, rx) = channel();
let timer = MessageTimer::new(tx);
let start = Utc::now();
let mut delays = vec!(400, 300, 100, 500, 200);
for delay in delays.clone() {
timer.schedule_with_delay(Duration::milliseconds(delay), delay).ignore();
}
delays.sort();
for delay in delays {
assert_eq!(rx.recv().unwrap(), delay);
}
assert!(Utc::now().signed_duration_since(start) <= Duration::seconds(1));
}
#[test]
fn test_guards() {
println!("Testing that callbacks aren't called if the guard is dropped");
let timer = Timer::new();
let called = Arc::new(Mutex::new(false));
for i in 0..10 {
let called = called.clone();
timer.schedule_with_delay(Duration::milliseconds(i), move || {
*called.lock().unwrap() = true;
});
}
thread::sleep(std::time::Duration::new(1, 0));
assert_eq!(*called.lock().unwrap(), false);
}
#[test]
fn test_guard_ignore() {
let timer = Timer::new();
let called = Arc::new(Mutex::new(false));
{
let called = called.clone();
timer.schedule_with_delay(Duration::milliseconds(1), move || {
*called.lock().unwrap() = true;
}).ignore();
}
thread::sleep(std::time::Duration::new(1, 0));
assert_eq!(*called.lock().unwrap(), true);
}
struct NoCloneMessage;
impl Clone for NoCloneMessage {
fn clone(&self) -> Self {
panic!("TestMessage should not be cloned");
}
}
#[test]
fn test_no_clone() {
// Make sure that, if no schedule is supplied to a MessageTimer
// the message instances are not cloned.
let (tx, rx) = channel();
let timer = MessageTimer::new(tx);
timer.schedule_with_delay(Duration::milliseconds(0), NoCloneMessage).ignore();
timer.schedule_with_delay(Duration::milliseconds(0), NoCloneMessage).ignore();
for _ in 0..2 {
let _ = rx.recv();
}
}
}